Articles

How Do Bees Fly?

Bee Flying

Scientists first realized that bees seem to flout the laws of mathematics in the 1930s. Calculations showed that their wings could not provide enough lift to get their bodies off the ground, but that didn’t stop bees from flying.

Have you ever wondered how bees fly and why is there all that buzzing? Buzzing is the sound of a bee’s beating wings.

Why Do Bees Buzz?

Bees buzz for two reasons. First, the rapid wingbeats of many species create wind vibrations that people hear as buzzes. The larger the bee, the slower the wingbeat and the lower the pitch of the resulting buzz.

Second, some bees, most commonly Bumble Bees, are capable of vibrating their wing muscles and thorax, the middle segment of their body, while visiting flowers — this is called buzz pollination. These vibrations shake the pollen off the flower's anthers and onto the bee's body.

Bumble Bees pollinate your tomato plants using buzz pollination. To read more: How Buzz Pollination Works

Bee Wing Anatomy

Bees have two sets of wings, one larger outer set and one smaller on each side of their body, which are held together with comb-like teeth called hamuli. These teeth allow the two wings to act as one large surface and help the bee create greater lift when flying.

The wings themselves are composed of three layers: (1) a transparent membrane on top and bottom supported by a network of veins that carry hemolymph (bee “blood”), (2) nerves and (3) breathing tubes.

Graphic of Bee Wing Structure
In each set of bee wings, the large and small wing is connected with hamuli

Bee wings exhibit a relatively simple pattern of venation, the pattern of longitudinal and transverse veins, compared to other more primitive insects. Veins are mechanical support of a wing, they help to overcome air resistance in flight. There are different longitudinal veins, partially branching, and longitudinal cross-linking to each other. Between the veins the thin transparent membranes are stretched.

Wings have other features that are harder to see. Hairs are often found on the outer surfaces, both above and below. The hairs vary in position, length, and density depending on the species. The forewings of bees have a stiffened area running along the front edge. Made of two parts called the pre-stigma and stigma, these reinforce the leading edge of the wing—the part that cuts through the air.

Flight Muscles

Within the bee thorax are two complete systems for moving wings. One system is known as the direct system, and the other as the indirect system.1 Although they work together, they control different movements.

The direct muscles attach to the wings themselves and allow the bee to move each wing independently. A bee can move her wings out —perpendicular to her abdomen—or back in, she can twist them forward and aft, she can move one over the other, or she can rest them over her back. These muscles are similar to those that control your arms and legs: you can move an extremity while holding the rest of your body completely still.

The second set — the indirect muscles —are not connected to the wings. Instead, they are attached to the insides of the thorax, which is actually quite flexible. Since the wings are outgrowths of the thorax, muscles that move the thorax also move the wings.

Graphic of bee flight muscles

The indirect muscles come in two types, vertical and horizontal. Vertical muscles run from the top of the thorax to the bottom. When these muscles contract, the thorax compresses from top to bottom. When the thorax is compressed, it gets wider, forcing the wings up. These are sometimes called elevator muscles, since they elevate the wings.

The second set of muscles, the horizontal ones, run from the front of the thorax to the back. When these contract, the thorax becomes shorter from front to back but taller from top to bottom, which forces the wings down. Not surprisingly, these muscles are known as depressors.

When these two sets of indirect muscles work together, alternately contracting and relaxing, the bee’s wings are raised and lowered at an incredibly fast rate. In fact, the wings of a bee beat at about 250 cycles per second, faster than the nerve impulses can travel from the brain to the muscle.

How Bees Fly

Animation of bee flight

Understanding bee wings was key to figuring out how bees could fly. Their wings are not rigid, but twist and rotate during flight. Bee wings make short, quick sweeping motions front and back, front and back. This motion creates enough lift to make it possible for bees to fly.

Some other insects have a longer motion from front to back and a slower wing beat. The slower beat makes other insects more efficient, meaning they can get more lift with less work.

So why might bees use an inefficient way of flying? Scientists think that the style of flying bees use lets them carry heavy loads when needed. That ability comes in handy a lot for bees, who carry nectar and pollen from flowers back to the nest.

Graphic of bee wing movement in flight

Further Information:

 Wisconsin Bee Identification Guide
 Spring Wild Bees of Wisconsin
 Bumble Bees of Wisconsin
 Wild Native Bee Nest Boxes

Quiz Logo

Try The Honeybee Quiz

Take this quick quiz and see how much you know about honey bee anatomy. Honey Bees play an important role in pollination. Give the quiz a try!

Graphic of bee in winter

Where Do Bees Go In Winter?

Ever wondered where bees go in the winter? Take a look at the winter survival strategies of native bumblebees, and native solitary bees.

Summer garden

Garden Plan For Bees

This guide features regional native plants for the Great Lakes that are highly attractive to native bees and honey bees.

Bees flying footer graphic